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Abstract

The study treats the problem of automatic indexing and retrieval of
documents where it cannot be guaranteed that the user queries include the actual
words that occur in the documents that should be retrieved. Fuzzy tolerance and
similarity relations are presented and the notion of hierarchical co-occurrence is
defined that allows the introduction of two or more hierarchical categories of words in
the documents. If the query is based on a single keyword it is possible to extend the
query to the compatibility (or equivalence) class of the queried word and so, directly
matching documents or a class of matching words established by some sample
document collection and then documents matching with words in this latter class can
be retrieved. Various methods will be proposed and illustrated, with the intention of
real application in legal document collections.

1. Introduction

An information retrieval system allows users to efficiently retrieve documents
that are relevant to their current interests. The main problem is that the collection of
documents from which the selected ones have to be retrieved might be extremely
large, and often heterogeneous from various points of view: especially in the structure
and the use of terminology. This is very obvious with areas where the language of the
documents is close to natural language usage like in legal texts that form the main
target of this study.

A user typically specifies their interests via individual words or sets of words
(phrases), that are fragments of natural language texts. There is no guarantee that the
words specified in the query always exactly match the words used in the various
documents in the collection, even though the contents of the documents might be
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relevant in the context of the query. If e.g. only a synonym is used in the text that has
not been included in the query, a very relevant document might be completely left out
of consideration. There are also often documents with related concepts that might be
important for the user, but they are not aware of the fact of certain areas or concepts
being tightly connected with the target topic(s) in the query, and so, important
information might be lost if the search is not extended to these related topics.

2. Hierarchical co-occurrence

In this study a method will be introduced that is based on fuzzy relations,
especially similarity (equivalence) and tolerance (compatibility) relations, but
possibly also full or partial orderings, and that allows the “concentric” extension of
searches based on what we will call hierarchical co-occurrence of words and phrases.
By hierarchical co-occurence the following is meant: Almost every document has a
certain hierarchical structure concerning the importance of the words or concepts
occurring in it. It can be assumed that every document has a title which contains
certainly relevant information concerning the contents. Most documents also contain
sub-titles, etc. and some of them have a collection of keywords at the beginning of the
text. A finer classification of approaches useful for automatic indexing of the context
can be found in [1] and [2]:

1. Frequency-keyword approach. (In this context all informative words in the
text are called keywords, however, in the next, we will restrict the
usage of this term to words occurring on higher logical hierarchical
levels.)

2. Title-keyword approach. (using only higher hierarchical levels in the
document, such as titles, subtitles, headings, etc.)

3. Location method. (Using the introduction and/or conclusion of the
document or of each paragraph.)

4. Cue method. (It is based on semantic observations concerning the effect of
some special words or expressions in the vicinity of a given word, such
as “significant” or “impossible”.)

5. Indicator-phrase method. (Is also based on semantic contexts, like “The
main aim of this paper is...”, etc.)

6. Structural observations.

For the purposes of the hierarchical co-occurrence approach especially the
methods 1, 2, and 3 will be important, combined with some aspects of 6. We do not
reject the significance of approaches 4 and 5, but in the first introduction of our new
method, the former ones will be directly considered as the main sources of
information to determine the relational system in the given collection of documents.

The basic idea of automatic indexing based on co-occurrence is that words or
phrases occurring frequently together in the same document or even paragraph are
connected in their meaning in some way. Certainly, this will not mean that such words
are necessarily synonyms or have related meanings, as often antonyms occur together
just as frequently as synonyms, not to speak about more sophisticated semantic
connections. The simplest idea is to check words in the sense of approach 1, and
instead of linking documents with words, establishing a matrix or co-occurrence
graph indicating the mutual co-occurence of pairs of words and phrases. A finer



model will be introduced when the degree of co-occurrence is described by a
membership degree in the sense of fuzzy logic.

A more sophisticated approach is the hierarchical approach. In this, the
supposed semantic structure of the documents is taken into consideration in the
following way: We assume that the title is descriptive for the contents of the paper.
The words occurring in the title, except the non-important words like articles, or
connectives, in this particular context, should be very important for the whole
contents of the document. Similarly, the sub-title of each section, sub-section, etc. of
the document is assumed to be descriptive for the contents of the relevant sub-unit. In
this sense, there is a hierarchical semantic structure in the document that contains at
least two levels (1: title and eventual keywords, 2: text), but possibly more than two
(e.g. 1: title and keywords, 2: sub-titles, 3: texts) that can be represented by a tree
graph as in Fig. 1. In the case of sub-sub-titles, etc., the number of levels increases in
a similar way.)

 Title, keywords

Subtitles

Section texts

Figure 1.

If this concept is compared with the automatic indexing methods listed above
it is found that the terminology needs a slight change: In order to avoid confusion, the
term “keyword” will be restricted to a similar concept as was introduced under the
term “Title-keyword approach”, including essential words in the titles, the
“keywords” in the usual sense (comprising the expressions listed under the heading
“Keywords”), possibly the subtitles (depending on how many levels are considered),
and finally, depending on the problem, even the essential words in the special location
areas (introduction and conclusion). From now on, the term keyword will mean all the
words that are somehow highlighted in a document by their special positions, and so,
it is reasonable to assume that they contain references to the most significant aims of
that document. However, if more than two (keyword and general word) levels are
considered in the model, it will be necessary to introduce additional terminology:
“keywords” for the words occurring in the title and the “Keywords” section (and
maybe in the introductory and conclusion part of the whole document), “sub-
keywords” for the terms occurring in the sub-titles (and corresponding introductions
and conclusions), etc., and “words” for the lowest level comprising the contents of the
whole document. Let us denote the set of keywords for a given collection of
documents  D D D Dn 1 2, ,..., by  K D , and if there is a further hierarchy of the
keyword levels, by  K D1 ,  K D2 , etc., and the set of all significant words by W.
Then it is advisable to define these sets so that 

     K D K D K D Wm1 2   ...



where m denotes the number of hierarchical levels taken into consideration ( m 1).
The main idea is now the following. If a certain word or phrase is frequently

occurring together with another one in the same document, the two might have
connected meaning or significance. If a word or phrase is frequently occurring in a
document, or segment of a document of which the keywords (in the title, etc.) are
certain other words, the former ones would belong to the class of related concepts of
the latter ones. The more frequent is the co-occurrence, including the concept of
“hierarchical co-occurrence” as well (meaning that certain words  wi appear often in
texts that are titled or marked by certain other words  Wj , where very likely
   W wj i , however, even    W wj i  cannot be excluded!), the more it is likely
that any user querying for any Wj will be interested in documents containing wi in
the text - even if the queried word does not appear in the title of these latter
documents, maybe not in the text at all.

As an example let us take somebody who is interested in articles on Soft
Computing or Computational Intelligence. In many overview articles on these subject,
the term Fuzzy Logic will occur frequently. However, it is very likely that in an article
on Fuzzy Logic none of the terms Soft Computing or Computational Intelligence will
occur. In this case it is quite clear that the connection between SC and FL is
hierarchical in the meaning, and the structure of many documents will follow this, as
shown in Fig. 2.

Soft Computing

FL FL

NN
GA

SC

Conceptual relation Hierarchic tree

Figure 2.

The left hand side of the picture expresses that Fuzzy Logic is a special branch
of Soft Computing, and so, it is a subset of the topic marked by the keyword SC. The
right hand side shows that articles on SC include those related to Fuzzy Logic, Neural
Networks, Genetic Algorithms, etc. In the next section we attempt to introduce a
model that is suitable for finding documents not containing the words “Soft
Computing” but dealing e.g. with Fuzzy Logic, by querying for “Soft Computing”,
and not asking for “Fuzzy Logic”  at all.

3. Fuzzy relations

In this section, a short overview will be given on fuzzy relations in general,
and a few important types of fuzzy and crisp relations that will be referred to in the
next sections. In this section we also present some simple examples in order to



introduce the method proposed in the next part of the study. For further details on
fuzzy relations it is recommended that the reader consult [3] or some other textbook.

A fuzzy set A is always defined in terms of a universe of discourse  X x
and a mapping µ A from this set to the unit interval  0 1, :  µ A X: , 0 1 , where

 µ A x is called the membership function of the fuzzy set A, and its concrete values
for any x x 0 are the membership grades of x0 in A. A fuzzy relation is a fuzzy set
of the Cartesian product of two or more sets as the universe, so e.g. a binary fuzzy
relation R is defined by the mapping  µR X Y: ,  0 1 where    X x Y y , and
consequently   X Y x y  , . It is a special case when Y=X, i.e. the binary relation is
over the Cartesian square of a given universe

Binary fuzzy relations of X X are categorized according to their properties
in a similar manner to ordinary (crisp) relations. Equivalence relations ( ) in the
crisp sense are defined by the fulfillment of three properties: reflexivity ( x x is
always true), symmetry ( x y y x   ), and transitivity ( x y y z x z     ). The fuzzy
analog of equivalence is called the similarity relation ( ), and essentially the same
three properties hold, except that transitivity has to be formulated in a somewhat
different manner:

            µ µ µ µ µ µ       x x x y y x x z x y y z, , , , , , min , , ,1 .

Compatibility relations are reflexive and symmetric, but not necessarily
transitive as well, so they form a wider class than equivalence. The fuzzy analog is
called tolerance relation ( ), and it has the first two properties as above:

     µ µ µ   x x x y y x, , , ,1 .

Although in this paper mainly the above two types of relations will be
discussed, also full and partial orderings will be introduced. A crisp ordering relation (
) is reflexive, antisymmetric and transitive, the second meaning that
x y y x x y     . A full or linear ordering assumes that for all pairs in X Y
either x y or y x must be true. In a partial ordering, a pair of x and y might be
incomparable, i.e.  x y, . Fuzzy orderings are defined by the following:

            µ µ µ µ µ µπ π π π π πx x x y y x x z x y y z, , , , , , min , , ,    1 0 0 .

(In the above properties of relations x y z X, ,   holds everywhere.)

A rather convenient way to represent binary fuzzy relations of finite element
universes is the use of matrices, where columns and rows correspond to the elements
of the component universes X and Y and elements of the matrix are the membership
degrees themselves:

y1 y2 y3 ...
x1  µ x y1 1,  µ x y1 2,   µ x y1 3, ...
x2  µ x y2 1,  µ x y2 2,  µ x y2 3, ...

... ... ... ... ...



The same information can be visualized by a bipartite graph as in Fig. 3.
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Figure 3.

Similarly, relations of X X can be described by quadratic matrices as in
Table 1:

x1 x2 x3 ...
x1  µ x x1 1,  µ x x1 2,   µ x x1 3, ...
x2  µ x x2 1,  µ x x2 2,  µ x x2 3, ...

... ... ... ... ...
Table 1.

where e.g. similarity and tolerance relations have only 1-s in the diagonals (  µ x xi i,
), and are symmetrical, etc. The graphic equivalent of the above matrix is a graph as
in Fig. 4.

x1

x2

x3

 µ x x2 3,

 µ x x1 2,

xn

 µ x xn1 ,

Figure 4.

Selecting an arbitrary  α  0 1, in a fuzzy graph, the α -cut of the graph
contains only those edges to which at least α belongs as the membership degree. If
Xi is a node of the graph G representing a similarity relation, the set of all nodes

    E X X G X Xi j i j  µ α, represents the equivalence (similarity) class of Xi .



Because of the transitivity and reflexivity properties of the similarity relation it is
obvious that 

   X X E X X Xj k i j k, ,  µ α  and also that  X E Xi i .

Consequently, similarity relations generate α -partitions of the graph. The partition
can be represented by an empty graph, where each class in the partition is a node in
this new graph.

Tolerance relations behave in another way as tolerance is not transitive. While
every node is necessarily an element of its own tolerance cluster:  X T Xi i , it is not
true that other nodes in  T X i are also connected by edges to each other with at least
the same degree of membership as the defining node is to both nodes in the class. If
an  α  0 1, is selected, the α -cuts of tolerance classes of the nodes will usually not
be complete graphs themselves. On the other hand, if the maximal sub-graph  C X iα

of  T X i containing Xi itself is selected where every node has at least α
membership degree (α -clique), the set of  C X iα -s will form a cover of G, so that 

 C X Gi
i

αΥ   but usually    i j C X C Xi j   α α .

The graph generated by  C X iα will usually not be empty, as some nodes of G
belong to two or more compatibility classes simultaneously. (Obviously, the structure
of the cover and the generated graph will depend on the selected cut as well.) An
example is shown in Table 2 and Fig. 5. Graph G contains six nodes, X X1 6... ,
Table 2 shows all  µ X Xi j . Apparently the relation represented by G is not a
similarity relation as it is not transitive. Let us take e.g.  X X X3 4 5, , , here 

        µ µ µX X X X X X3 5 3 4 4 50 2 0 7 0 8 0 7, . min , , , min . , . .    ,

what contradicts the properties of similarity. On the other hand, all  µ X Xi i 1 (the
elements in the diagonal of the matrix are all 1-s, the relation is reflexive), and the
matrix is symmetrical (the relation is symmetrical itself), consequently G represents a
tolerance relation. Let us choose α 0 7. and take the α -cut of G. Remaining edges
are indicated by bold numbers (the elements of the diagonal represented by bold
italics). All other degrees are under the boundary of the chosen cut, and so, will fall
away from the α -cut of G. In Figure 5 all edges above the boundary are indicated
with their respective degrees of membership, while the remaining edges are shown
without their degrees. Gα , the α -cut of G is a crisp graph that represents a crisp
compatibility relation that is the α -cut of the original tolerance relation given by G. 

Let us construct now the compatibility classes of the relation Gα . (It should
be mentioned however that searching compatibility classes is an NP-complete task
that needs a very long time for larger graphs, cf. E.g. [4]. There exist some faster
algorithms for solving this problem approximately, however in this paper we do not
intend to go into details of computational complexity questions outside of the main
target problem. In this study we just suppose that compatibility classes have been
found by either exhaustive search - like in the example - or by a parallel algorithm, or
by an approximative algorithm. This can be done as establishing the compatibility



classes has to be done only once, before the information retrieval service is started, in
order to have a “logical map” of the knowledge in the data base in question, as it will
be seen in the next sections.) The maximal compatibility classes in Gα (α 0 7. ) are
the following:

      C C X X X C X X X C X X Xα    1 1 2 6 2 3 4 6 3 4 5 6, , , , , , , , .

 X1 X 2 X 3 X 4 X 5 X 6

X1 1.0 0.7 0.2 0.5 0.3 0.8
X 2 0.7 1.0 0.0 0.6 0.1 0.9

 X 3 0.2 0.0 1.0 0.7 0.2 0.7
X 4 0.5 0.6 0.7 1.0 0.8 0.8
X 5 0.3 0.1 0.2 0.8 1.0 0.9
X 6 0.8 0.9 0.7 0.8 0.9 1.0

Table 2.

X1

X 2

X 3

X 4

X 5

X 6
 0.8

 0.7

 0.9

 0.8

 0.7

0 9.
0 7.

0 8.

Figure 5.

It is not always necessarily so, but these classes cover the whole graph, and
there is no such class which can be omitted so that the remaining still cover G. The set
of compatibility classes is indicated in Figure 6.

X1

X 2

X 3

X 4

X 5

X 6

C1

C2

C3

Figure 6.



The graph structure of the compatibility classes themselves can be seen in Fig.
7.

C1

C3

C2

Figure 7.

The class structure is presented in a crisp graph, although the connection
between the second and third classes is “stronger” than that between the other two
pairs (thick line), as there are two overlapping nodes in the first case and only one in
the other two, which fact could be taken into consideration by weighting the edges of
the class graph, e.g. by attaching fuzzy membership degrees to its edges. 

Finally, it has to be mentioned that relations over X Y and Y Z can be
combined to a single relation over X Z by one of the composition operations. The
definition of the most popular max-min composition is 

       µ µ µx z x y y zi k y Y i j j kj
, max min , , ,  .

The operation is illustrated by a very simple example: Let
     X x Y y y y Z z  , , , ,1 2 3 and the membership degrees for the relation

 P X Y, be  0 3 0 5 0 7. , . , . , further on the membership degrees for  Q Y Z, be
 0 6 0 4 0 2. , . , . , always in the increasing sequence of the subscripts of y. Then the
result of the relational composition      R X Z P X Y Q Y Z, , , ο for the only
existing pair of elements  x z, will be

      max min . , . ,min . , . ,min . , . .0 3 0 6 05 0 4 0 7 0 2 0 4 .

4. Fuzzy relations established by co-occurence and importance measures

In this section we introduce a way of establishing complex relations based on
the absolute and relative simple and weighted word counts in documents, and parts of
documents. 

The basic hypothesis is that the frequency of occurrence of significant words
in a certain document is connected with the importance of that word in the document.
Another additional assumption will be that pairs of words occurring frequently in the
same document or the same part of a document might be connected in the meaning
(might be synonymous, antonymous, or otherwise related). 

In the referred works [1], [2] attempts have been made to find ways to index
documents automatically. The main point in this is the frequency of the words (in the
whole document or in some parts of it, as it was summarized in Section 2). In [5] the
concept of fuzzy importance degree (also referred to as “measure”) was introduced. If



the [0,1]-normalized frequency of word wi in the title/keyword section of document
Dj is denoted by Tij (keyword frequency, or title-keyword frequency), the

normalized frequency of the same in the introduction/conclusion parts of the
document is Lij (location-keyword frequency), and the frequency in connection with
cue words is Cij , finally, if these three factors are weighted by λ λ λ1 2 3, , (where
λ λ λ1 2 3 1   ), by the following value the normalized fuzzy importance degree is
calculated by the convex combination of the three frequencies:

F T C Lij ij ij ij  λ λ λ1 2 3 .

(As a matter of course, any one or two of λi can be equal to 0.) Obviously, Fij is a
fuzzy membership degree that expresses the connection of wi and Dj (  µ w Di j,

). If the hierarchical structure of the document is taken into consideration as illustrated
in Fig. 1, fuzzy importance degrees of level one ( Fij itself), level two, etc. can be
introduced ( k

ij
k

ij
k

ij
k

ijF T C L2
1

2
2

2
3

2  λ λ λ , the right superscripts indicating that level
2 titles, i.e. sub-titles, level 2 introductions and conclusions, and to some extent, cue
words located in some significant parts of the sub-sections were calculated; and the
left superscripts referring to the index of the sub-document, i.e. meaning “part k” in
this case, this latter extending to multiple component superscripts if necessary, e.g. k,l
meaning “kth sub-section. lth sub-sub-section.)

Another way of expressing the importance of a word in the document is just
calculating its normalized frequency in its whole text (  K w Dij i jν , ) that will be
called fuzzy occurrence degree. As a matter of course, the frequency within any sub-
section, sub-sub-section, etc. can be calculated, and so the frequencies k

ijK 2 , etc. can
be determined.

From now on it will be assumed that both fuzzy importance degrees: the
normalized keyword frequencies Fij , etc. and the normalized word frequencies of
(overall) occurrence Kij obtained by automatic indexing of the relevant document
and its sub-sections, etc. are available.

If the importance degree of each significant word in each document in a full or
sample collection is available, the fuzzy co-occurrence degrees can be calculated. By
co-occurrence the similarity or logical equivalence of the importance degrees or
(normalized) relative frequencies will be understood. Fuzzy logical equivalence can
be defined in various ways (all of these being extensions of the Boolean logical

equivalence operation    A B A B A B       ). In this study, two

straightforward definitions of fuzzy equivalence will be used. The first one is based
on the Zadeh-style fuzzy operators 

   µ µ~  A Ax x1 ,       µ µ µA B A Bx x B~ min ,   and

      µ µ µA B A Bx x B~ max , 

where ~ , ~ and ~ stand for fuzzy negation, conjunction and disjunction, resp.,
and has the form 



            µ µ µ µ µA B A B A Bx x x x x~ max min , ,min ,   1 1 . 

The second one is based on the algebraic fuzzy operations (where the negation is
identical with the above), being 

     µ µ µA B A Bx x x~   and          µ µ µ µ µA B A B A Bx x x x x~    .

(In the next, complicated denotations will be simplified such that the fuzzy logical
operation will not be differentiated by the wave above the operator, as it is usually
clear from the context if it is a fuzzy operation, further, membership functions will be
usually denoted just by the symbol of the referred fuzzy set or statement, so e.g. the
algebraic fuzzy disjunction being defined simply as A B A B AB    .) For more
details on fuzzy operators and operations see [3].

When introducing hierarchical co-occurrence the following method is meant:
First the hierarchical structure of and the way of indexing the document in that
particular model are determined. (Determine the number of levels in the document.
Determine the weights λi . For each hierarchical level and within it, for each section,
sub-section, etc. determine the text unit in question, and if necessary, its special
location parts, like the introduction, etc.) Then for each text unit (including its title,
etc.) determine the fuzzy importance degree and the fuzzy occurrence degree as well,
and the fuzzy equivalence of these two degrees will result in the hierarchical fuzzy co-
occurrence degree of the given document, section, etc. Its formal definition is as
follows:

H F Ki i j i j i j1 2 1 2
 

 for the main text, and 

k
i i j
k k

i j
l k

i j
lH F K

1 2 1 2
 

for sub-section number k in level l (assumedly l=2, here), all for keyword Wi1 and
word wi2  in document Dj . 

As a matter of course, non-hierarchical co-occurence of pairs of words in the
text can be calculated in a similar manner:

N K Ki i j i j i j1 2 1 2
  ,

this formula standing for words wi1  and wi2 in document Dj .
If a sample collection of documents is fixed e.g. for training the information

retrieval system, the average degrees of hierarchical fuzzy co-occurrence can be
calculated by



H
H

nij

ijk
k

n

 


1 ,

where n is the number of documents in the sample collection, and i stands now for the
subscript of the keyword, j for that of the general text word in question. Similarly, the
average non-hierarchical co-occurrence degree can be defined by

N
N

nij

ijk
k

n

 


1

(using the subscripts in the same way as with H), and this index can be determined
directly for keywords in the titles, special location parts, and cue word neighborhoods
for any pair of keywords in the same manner as well ( Nij

W ). 
All fuzzy co-occurrence degrees defined here can for the bases of fuzzy

relations describing the mutual relations of pairs of words in a collection of
documents.

5. Direct queries by non-hierarchical and hierarchical co-occurrence of words

Let us explain the meaning of these degrees by a very simple example. The
user is querying for the word “game”. Let us suppose that this is one of the keywords
in the model. The simplest information retrieval system would just search for
documents where this word occurs wherever in the text (including the title). Then
probably most of documents will be left out that refer to some kind of particular
game, and do not mention (frequently) the word “game” itself. It is obvious that
information retrieval by direct occurrence of a word will usually be very restricted
and will not satisfy most of the users.

If the non-hierarchical co-occurrence relation of the keywords is known, it can
be examined what the most frequent words are that occur jointly with “game”, e.g. in
titles only (λ λ λ1 2 31 0  , ). Let us assume that Nij

W will be maximal for the
keywords “gamble”, “sport”, and “play”. Certainly, these are not synonyms to each
other, however, all belong to one of the meanings of the original word. Consequently,
a more refined search can be done for all documents that contain “game” itself or one
of the latter three in the title. A similar search in the whole texts using the Nij based
full text co-occurrence relation might lead to another (assumedly wider) collection of
words, and all documents indicated by high values in this relation graph can be
retrieved as being of possible interest for the user.

If the hierarchical co-occurrence relation defined by Hij is known as well,
then words occurring frequently in documents that contain “game” in the title will be
also indicated, as e.g. golf, cricket, baseball, football, poker, baccarat, Black Jack,
chess, etc. By knowing the hierarchical connections, all documents can be retrieved
that have a reference or have frequent reference to one or several of these words, even
if they do not contain “game” in the title at all! It remains a problem however that golf
and baccarat have little to do with each other and most of the users querying for



games will probably search for either various kinds of gambling or various kinds of
sports, but not for both at the same time. So, a considerable part of the retrieved
documents will be very likely useless for the user, and because of this, a secondary
“manual indexing” will be necessary in order to select relevant documents out of the
too large amount of potentially interesting documents. 

In the next section a hierarchical relational map will be introduced that might
enhance the effectiveness of queries, both in the sense of extending the search for
documents that have no lexical but semantic coincidence with the queried word(s),
and in the sense that words and phrases with too distant semantic relations to the
queried word(s) will be excluded from the circle of retrieved documents by applying
the tolerance classes established in the map.

6. Complex hierarchical relational map of document collections

By using the fuzzy importance and co-occurrence degrees, and the fuzzy
relation classes discussed in the previous sections, it is possible to establish a complex
hierarchical relational map of a sample document collection. In order to do that, it is
necessary to decide the levels and weighting factors to be taken in consideration, and
then do the keyword and general word counts in the whole collection. After having
these values, all frequencies must be normalized for the unit interval [0,1], e.g. by
mapping the highest keyword and general word counts in the collection to 1, and
mapping all other proportionally:

 I
I

I
normalized i

absolute i

j
n

absolute j
,

,

,max


1

 

where I denotes any keyword or word index in the sense of the former equations, and
n is the number of documents in the sample. By this, the normalized indices can be
interpreted as fuzzy membership degrees and can be used directly in the formulae
given in Section 4. As a result, the following relations and corresponding graphs will
be established: 

n Keyword co-occurrence relation/graph GW (established by the
normalized co-occurrences Nij

W )
n Word co-occurrence relation/graph Gw (established by the normalized co-

occurrences Nij )
n Fuzzy importance degree (keyword-document occurrence) relation/graph

GWD  (established by the fuzzy importance degrees Fij )
n Word-document occurrence relation/graph GwD (established by the

normalized occurrences Kij

n Hierarchical co-occurrence relation/graph GWw (established by the
hierarchical co-occurrences Hij )

n Further hierarchical co-occurrence relations for multilevel models

In Fig. 8 the structure of these relations can be seen for two hierarchical levels.
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Figure 8.

There are three sets of nodes: the set of documents D, the set of keywords W
and the set of words w. (It has to be mentioned that in practice, it is reasonable to
assume that W w .) There is no relation established among the elements of D, even
though it could be reasonable to find the degree of similarity or tolerance between
pairs of documents however, it is supposed that the number of documents even in the
sample collection is rather high (e.g. several thousand), and so, the number of pairs
would be even higher (in the order of several millions). There is a relation over the
elements of W, represented by GW , where the membership degrees are defined by

 µ W W Ni j ij
W,  ; and there is another relation over w, represented by Gw , where

 µ w w Ni j ij,  .
There is the bipartite graph GWw over W w , where  µ W w Hi j ij, 

expressing the hierarchical co-occurence of keyword-general word pairs.
Finally, there are two more bipartite graphs representing the importance

degree and frequency of occurrence of keywords and words, resp., GWD over W D
, where 

 µ W D Fi j ij,  , and GwD  over w D , where  µ w D Ki j ij,  .

The bipartite graphs represent also mappings in the following sense:

G W w G W D G w DWw WD wD: , : , :   .

The image of every keyword Wi is a fuzzy set of words in w, and also a
fuzzy set of documents in D, where by knowing the membership degrees attached to
every pair, the degree of belonging to the set is defined by the degree of the relation
between them. E.g.



       C W G W D D D FD i WD i W j W j iji i
  , ,µ µ .

Also the image of every word wi  in w is a fuzzy set in D, defined by GwD . 
If hierarchical search is done, the starting item is always a keyword. As GWw

is a relation from W to w, and GwD is one from w to D, there is another way of
mapping the keywords to the documents, by applying relational composition
G GWw wDο that will be shortly denoted by GWD

ο to differentiate it from the direct
relation GWD .

As fuzzy relations indicate the degree of membership (e.g. in a relation), it is
usually advisable to set a threshold value τ between 0 and 1, and considered are all
matches that are at least equal to τ . If it is necessary, τ τ' should be chosen to
extend the circle of retrieved documents. If the relation is at least as strong as the
chosen threshold, it will be called matching.

By having the above relational map the following search methods can be
proposed:

Method 1. (Search by keyword occurrence) If given is the keyword Wi, all
documents matching this keyword will be retrieved.  Δ G WWD iτ . (Δ denotes the
set of documents retrieved, the subscript refers to the τ -cut of the relation.) For an
illustration see Fig. 9.

W

D

µ τ

µ τ
Δ

Wi

Figure 9.

In the figure the queried keyword is indicated by a dark node. All matching
documents in the collection (thick line nodes in D) are connected to it by solid lines,
while a document having less membership than the threshold in relation GWD is
shown by dashed line connection. This latter is not considered to be matching and is
left out of the class of retrieved documents Δ .

Method 2. (Search by keyword and hierarchical co-occurence) Determine the
set of words that match the keyword. All documents that match any of the matching
words will be retrieved.   Δ G G WwD Ww iτ τ2 1

. (τ1 and τ 2 might be different or
identical thresholds determining the level of matching.) The method is illustrated in
Fig. 10.



W D

µ τ 1

µ τ 2

Δ

Wi

w

 
µ τ 1

G WWw i

µ τ 2

Figure 10.

Denotations are similar as in the previous example, the class of matching
words in w is indicated by thick line nodes and solid lines show membership in GWw

over threshold τ1 , while the dashed line goes to a word below this value. In D all
documents are included in class Δ where there is a relation at least as strong as τ 2

with at least one of the matching words. (Membership in Δ  is defined by
 

     µ τΔ D G w D w C Wj w wD k j k ik
 max ,

1
.)

Method 3. (Search by keyword compatibility/equivalence relations and
occurrence) Determine the compatibility or equivalence class of the given keyword in
W for given threshold σ . This is denoted by  C WW iσ . Search all documents
matching the compatibility class of the original keyword.   Δ G C WWD W iτ σ .

W

D

µ τ

µ τ
Δ

Wi 
µ σ

C WW i

µ σ

Figure 11.

The figure presents the compatibility class belonging to the queried word. As
tolerance is not transitive, elements of the class are not necessarily connected by
membership above threshold σ , and elements of W connected above threshold to



elements of the compatibility class do not belong themselves to the class. Keywords
connected to the queried word with less membership than the threshold do not belong
to the class. All documents that are connected with at least one of the keywords in the
compatibility class of the queried word stronger than τ are included into Δ .

Method 4. (Search by keyword compatibility/equivalence relations and
hierarchical co-occurrence) Determine the compatibility class in W and all matching
words in w. All documents matching the image of the compatibility class of the
original keyword will be retrieved.    Δ G G C WwD Ww Wτ τ σ2 1 1 .

W
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µ τ 2

Δ

Wi

w
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µ τ 1

G WWw i

µ τ 2

 
µ σ

C WW i

Figure 12.

In Part I of this study methods were discussed where the user starts their query
by a single keyword. Based on similar definitions and mathematical tools it is possible
to extend the approach to queries where a group of keywords or words is determined
at the beginning, and so the system will establish the relevant classes in W and w by
tolerance or equivalence relations.
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